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A novel method is developed to simulate suspensions of deformable particles by
coupling the lattice-Boltzmann method (LBM) for the fluid phase to a linear finite-
element analysis (FEA) describing particle deformation. The methodology addresses
the need for an efficient method to simulate large numbers of three-dimensional and
deformable particles at high volume fraction in order to capture suspension rheology,
microstructure, and self-diffusion in a variety of applications. The robustness and
accuracy of the LBM–FEA method is demonstrated by simulating an inflating thin-
walled sphere, a deformable spherical capsule in shear flow, a settling sphere in a
confined channel, two approaching spheres, spheres in shear flow, and red blood cell
deformation in flow chambers. Additionally, simulations of suspensions of hundreds
of biconcave red blood cells at 40 % volume fraction produce continuum-scale physics
and accurately predict suspension viscosity and the shear-thinning behaviour of blood.
Simulations of fluid-filled spherical capsules which have red-blood-cell membrane
properties also display deformation-induced shear-thinning behaviour at 40 % volume
fraction, although the suspension viscosity is significantly lower than blood.

1. Introduction
Non-dilute suspensions of deformable particles are integral to many industrial

and biological processes. Whether the suspended particles are added to the fluid
for the sole purpose of modifying the fluid’s behaviour such as in paint (Cohu &
Magnin 1995), the particles define the industrial product such as fibres in paper
making (Thorp & Kocurek 1998), or the particles perform biological functions
such as platelets (Goldsmith et al. 1995; Kroll et al. 1996), leukocytes (Munn,
Melder & Jain 1996), and red blood cells (Fung 1993), understanding the underlying
physical processes is paramount. In this paper, a novel method based on coupling
the lattice-Boltzmann method (LBM) to a linear finite-element analysis (FEA)
is developed to allow the simulation of deformable particle suspensions. The
methodology addresses the need for an efficient method to simulate large numbers
of three-dimensional deformable particles in order to capture suspension rheology,
microstructure, and self-diffusion in a variety of applications. Some important
suspension properties such as normal stress differences and suspension pressure can
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be difficult to measure experimentally; however, the fluid and solid states are known
in simulations, allowing for easy computation of bulk stress and derivative terms such
as suspension pressure and normal stress differences, local microstructure, and particle
diffusivities.

Computer simulations including the lattice-Boltzmann method (Ladd 1994;
Aidun & Lu 1995; Aidun, Lu & Ding 1998; Qi 1999; Ding & Aidun 2000,
2003; Ladd & Verberg 2001) and Stokesian Dynamics (Brady & Bossis 1988;
Sierou & Brady 2002, 2004) have revealed important phenomena in self-diffusion
and microstructure anisotropy. Although these simulation techniques have aided
understanding of suspension physics, they are unable to capture phenomena unique
to deformable suspensions. Existing simulation techniques for deformable particles
including the boundary-integral (Breyiannis & Pozrikidis 2000; Zinchenko & Davis
2002; Pozrikidis 2003, 2005) and immersed-boundary methods (Eggleton & Popel
1998; Liu & Liu 2006) have advanced this area considerably. Dupin et al. (2007) have
applied the LBM to the simulation of deformable particles, and they illustrate the
computational efficiency and parallelism the lattice-Boltzmann framework affords.

The coupled LBM–FEA simulation technique developed in this paper allows
the efficient simulation of large numbers of deformable particles and leverages
the ease of parallel implementation of the lattice-Boltzmann method, fluid–solid
coupling, and linear-elastic finite-element description of particle deformation. This
paper presents the coupled LBM–FEA methodology in § 2, with consideration to
computational efficiency, the FEA object discretization, and stability issues unique
to the LBM and FEA coupling. In § 3, several sample simulations are presented
in order to validate the methodology to experimental and analytic results, and
in § 4, results for large numbers of red blood cells and spherical fluid-filled capsules
are shown. The efficiency, versatility, and limitations of this method are discussed
in § 5.

2. Method
2.1. Lattice-Boltzmann

The lattice-Boltzmann technique is well-documented for the direct numerical
simulation of particles suspended in fluid (Ladd 1994; Aidun & Lu 1995; Aidun
et al. 1998; Qi 1999; Ding & Aidun 2000, 2003, 2006; Ladd & Verberg 2001). Many
variants of the LBM exist, but the method of Aidun et al. (hereinafter referred to as
ALD) is presented here. As initially described by Aidun et al., the ALD method is a
single-relaxation method that excludes the fluid inside a solid boundary. This method
is suited to moderately low-Reynolds-number flows, whereas other lattice-Boltzmann
variants may be used for both zero and higher (Lallemand & Luo 2000) Reynolds-
number flows. The lattice-Boltzmann technique is presented here in the non-colloidal
limit, where the effect of Brownian motion is negligible. Extensions to Brownian
suspensions are possible and have been demonstrated for rigid-particle suspensions
(Ladd & Verberg 2001).

Briefly, the lattice-Boltzmann method discretizes the velocity space of the Boltzmann
equation, resulting in a lattice spacing based on the chosen set of discrete velocity
vectors, eσ i . A three-dimensional 19-vector Cartesian velocity set is chosen for eσ i ,
where the subscripts σ and i denote the Cartesian directions. The time evolution
of the Boltzmann particle distribution function is calculated through a collision and
streaming operator using the Bhatnagar–Gross–Krook (BGK) collision operator with
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a single relaxation time, τ (Chen & Doolen 1998),

fσi(r + eσ i, t + 1) = fσi(r, t) − 1

τ

(
fσi(r, t) − f

(0)
σ i (r, t)

)
, (2.1)

where fσi is the Boltzmann particle-distribution function, f
(0)
σ i is the equilibrium

distribution function, r is the spatial location, and t is the time. The solution
to the lattice-Boltzmann equation is obtained at low Mach number based on the
lattice-Boltzmann pseudo-sound speed, cs . As demonstrated using a Chapman–Enskog
expansion (McNamara & Zanetti 1988), the lattice-Boltzmann technique converges
to the Navier–Stokes equations when the lattice spacing, cσi , is much smaller than
a characteristic length scale of the simulation. The lattice-Boltzmann relaxation time
scale is related to the fluid viscosity by τ = 3ν + 0.5. The equilibrium distribution
function is defined as

f
(0)
σ i (r, t) = ρ(r, t)[Aσ + Bσ (eσ i · u) + Cσ (eσ i · u)2 + Dσu2], (2.2)

where density and momentum are given by

ρ(r, t) =
∑
σ,i

fσ i(r, t)

and

ρ(r, t)u(r, t) =
∑
σ,i

fσ i(r, t) eσ i .

Mass and momentum must be conserved by the equilibrium distribution function, and
coefficients Aσ to Dσ , along with the details of the fluid–solid interaction, are given by
Aidun et al. (1998). Fluid-particle boundaries are considered in a ‘link-bounce-back’
manner based on the lattice links crossing a solid boundary as discussed in § 2.3.

2.2. Finite-element

The present study examines both deformable solid particles and deformable fluid-
filled membranes; however, the framework is general and may incorporate a variety
of models. The trajectory and deformation of an elastic deformable solid are governed
by Cauchy’s equation,

Dρsus

Dt
= ∇ · T, (2.3)

in which the left-hand side is the material derivative of solid momentum, and T
is the elastic stress tensor. For deformable solid particles, the shearoelastic number
(Goddard & Miller 1967; Pal 2003), Nse = μγ̇ /GS , governs particle deformation where
μ is the fluid dynamic viscosity, γ̇ is the fluid shear rate, and GS is the particle shear
modulus. The capillary number, CaG =μγ̇R/GM , governs deformation of fluid-filled
elastic capsules, where R is the particle radius and GM is the effective membrane
shear modulus (GM = GStM for membranes with thickness, tM ).

A transient finite-element analysis is chosen to calculate the time evolution of
deformable particles in suspension because this method is well developed and versatile.
The transient finite-element method integrates virtual work over the volume of the
element, ∫

tr(ε̄ ⊗ T) dV =

∫
X̄ · FtrdA +

∫
X̄ · Fb dV, (2.4)

where X̄ are the elemental virtual displacements, ε̄ is an elemental virtual strain due
to virtual displacements, Ftr are traction stresses on the surface, Fb are body stresses
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Figure 1. (a) Linear-elastic solid element with four nodes (tetrahedron) and (b) linear-elastic
shell element with 3 nodes (triangle). Shell elements have a constant thickness and rotational
degrees of freedom along elemental coordinates at each node for bending stiffness.

such as inertia, A is surface area, and V is volume. Nodal displacements and positions
are related to elemental displacements and positions through an interpolation or
shape function, Hi , by

X =

N∑
i=1

Hi xi , r =

N∑
i=1

Hi r i , (2.5)

where r is a global position vector, and xi and r i are the nodal displacement and
global position vectors of the ith node, respectively. The relationships in (2.5) also
hold for virtual displacements, and the summation is over all nodes in a given
element. In the present study, linear-elastic solid elements are used to model solid
deformable particles such as platelets, and linear-elastic shell elements are used to
model deformable fluid-filled membranes such as capsules and red blood cells. The
linear-elastic solid element is shown in figure 1(a) with four nodes, and the linear-
elastic shell element is shown in figure 1(b) with three nodes.

The shape function uses a natural coordinate system to express virtual (or
actual) displacements of the nodes to any point on an element. These coordinates,
S = (S1, S2, S2), are defined in figure 1 with an origin in the centre of the element and
normalized such that for any given direction i, −1 � Si � 1. For solid elements, the
coordinates are not necessarily orthogonal and follow the undeformed element edges,
which are shown in bold in figure 1(a). The shape function for solid elements is

H1 = 1
8
[(1 − S1)(1 − S2)(1 − S3)],

H2 = 1
8
[(1 + S1)(1 − S2)(1 − S3)],

H3 = 1
8
[(1 + S1)(1 + S2)(1 − S3)],

H4 = 1
8
[(1 − S1)(1 + S2)(1 − S3)],

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.6)

where the shape function subscripts 1, 2, 3, 4 refer to the nodes I, J, K, L in figure 1(a).
The shell elements are shown in figure 1(b) with three nodes and rotational degrees
of freedom for bending stiffness. The shape function for shell elements is formed by
truncating the solid shape function and taking i = 1–3 in (2.6), where shape function
subscripts 1, 2, 3 refer to the nodes I, J, K in figure 1(b). The coordinates are always
orthogonal for shell elements where the out-of-plane normal coordinate, S3, is chosen
to make the coordinate system right-handed, and S2 is orthogonal in the direction of
NK .

Elemental strains are calculated by differentiating the elemental displacements,
ε = dX/dr , and relating the elemental displacement and position to nodal quantities
using (2.5). At this point, the integrals in (2.4) are evaluated in terms of nodal
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virtual displacements, and elemental stiffness and mass matrices are constructed from
elemental material properties such as density and elasticity. A detailed derivation of
this process can be found in Bathe (1996). On summing over all elements in the object,
the resulting transient finite-element equation is obtained,

Mẍ + Cẋ + Kx = F, (2.7)

which determines the time-evolution of the nodal displacement vector, x, and its time
derivatives, ẋ and ẍ, where the nodal-displacement vector is defined as the deformed
node location minus the undeformed node location. The global mass, M, and stiffness,
K, matrices are constructed from summing the elemental matrices , and the force
vector, F, is calculated from traction forces resulting from the fluid–solid coupling as
described later.

The damping matrix is chosen as a Rayleigh damping matrix,

C = αDM + βDK, (2.8)

where the coefficients αD and βD are related to the solid body damping ratios
via ζ (ωn) = 0.5(αDω−1

n + βDωn), where ζ is the damping ratio for a given modal
circular frequency, ωn. The Rayleigh damping coefficients are chosen based on the
desired damping ratios for given solid material properties. To avoid influencing
particle dynamics, damping ratios are chosen such that ζ (ωn) � 1 for all simulations
presented here. A finite-element object contains many discrete modes representing a
spectrum of vibrational frequencies, and these frequencies are calculated via a modal
analysis in ANSYS using a block Lanczos routine. A review of finite-element modal
analysis may be found in Bathe (1996).

The transient finite-element equation (2.7) is solved using Newmark’s integration
method, where Newmark’s equations,

ẍt+1 = β−1
n �t−2[x t+1 − xt − �t ẋt − �t2 (0.5 − βn) ẍt ] (2.9)

and

ẋ t+1 = ẋt + �t [(1 − γn) + γn ẍ t+1] , (2.10)

combine with (2.7) to produce a solid phase time-evolution equation of the form

K′
t+1x t+1 = F′

t+1, (2.11)

where

K′ = K +
1

βn�t2
M +

γn

βn�t
C,

F′ = F +
M

βn�t2
[x t + �t ẋ t + �t2 (0.5 − βn) ẍ t ]

+ C

[
γn

βn�t
x t +

(
γn

βn

− 1

)
ẋt + �t

(
0.5

γn

βn

− 1

)
ẍt

]
, (2.12)

and the t subscripts denote time. For convenience, (2.12) is rewritten as F′ = F +
M ′ + C ′. The choice of βn = 1/6 and γn = 1/2 yields a constant acceleration method
that is unconditionally stable. To guarantee convergence, the integration time step,
�t , is chosen as less than 0.1 of the smallest fundamental period as determined by the
modal analysis of the finite-element particle. In general, finite-element integration may
be performed on a different time scale from the lattice-Boltzmann propagation and
collision. For example, FEA integration can be performed every 10 lattice-Boltzmann
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time steps to optimize computational efficiency. For particle shearoelastic or capillary
numbers O(0.1), the required finite-element time steps are generally longer than the
lattice time step; however, in current calculations, the finite-element time step is equal
to the lattice time step with a minimal reduction in performance.

In order to simulate large numbers of deformable particles in suspension, the FEA
must be incorporated efficiently, necessitating the assumption of small body-fixed
deformations. To comply with this assumption, a particle coordinate system is fixed on
a particle’s centre of mass and oriented using the average angular displacement of the
finite-element nodes. Although elemental co-rotational procedures are typically used
for large-rotation problems (Rankin & Brogan 1986; Campanelli, Berzeri & Shabana
2000), when averaged, the co-rotational procedure gives less consistent results than
a simple average angular displacement. The use of a body-fixed coordinate system
for the solid particles results in invariant linear-elastic stiffness, mass and damping
matrices that may be determined a priori for each type of particle. Thus, the left-hand
side of (2.11) is constructed and inverted once for each particle type and applied to all
particles of that type at all time steps. This simplification results in O(n2) operations
for the time-evolution of solid particles as opposed to O(n3) operations for inversion,
where n is the size of the particle’s finite-element matrices.

2.3. Fluid–solid coupling

Coupling between fluid and solid is based on lattice links crossing the solid boundary.
These lattice links lie along lattice-direction vectors and have endpoints on lattice
nodes on either side of the particle boundary (Aidun et al. 1998). Lattice links
are found on the discretized finite-element surface using a ray-tracing algorithm
commonly used in computer graphics. In this method, rays are projected along the
lattice directions and tested for intersection with the triangles comprising the solid
surface using a fast and minimum-storage algorithm. The intersection is found through
direct three-dimensional calculation using barycentric coordinates, which eliminates
the need for two-dimensional projections or calculation of the plane equation for
the triangle. For more details on this method, see the implementation by Möller &
Trumbore (1997).

The fluid force on the moving solid boundary is determined by

F
(B)
σ i

(
r + 1

2
eσ i ′, t + 1

2

)
= 2eσ i ′[fσi ′(r, t+) − ρBσ ub · eσ i ′], (2.13)

where F
(B)
σ i is the force along the σ ith lattice direction vector (eσ i). Lattice vectors

with a σ i ′ subscript have opposite directions from lattice vectors with subscript σ i,
and fσi ′(r, t+) is the post-collision particle-distribution function in the direction σ i ′,
where the post-collision particle distribution is defined as

fσi(r, t+) ≡ fσi − 1

τ

(
fσi (r, t) − f

(0)
σ i (r, t)

)
.

The boundary velocity, ub, is determined by linear interpolation from the finite-element
nodal velocity on the surface intersected by the link. The fluid particle-distribution
function along the σ ith lattice vector is modified by the presence of the solid boundary
by

fσi (r, t + 1) = fσi ′(r, t+) + 2ρβσ ub · eσ i, (2.14)

which imposes the correct velocity gradient in the fluid stress tensor.
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Figure 2. Description of spherical particles with elemental mesh length ratios ranging from
lFEA = 2.0 (finely meshed) to lFEA = 6.2 (coarsely meshed). D = 20 for all 3 particles.

2.4. Coupling of forces to finite elements

The lattice-Boltzmann methodology places restrictions on the ratio of the macroscopic
length scale (such as particle diameter, D) and the lattice length scale, cσi . This
restriction comes from the Knudsen-number-like parameter in the lattice-Boltzmann
derivation that requires sufficient lattice resolution of the suspended particles, i.e.
D/cσi � 1. Ding & Aidun (2003) find converging drag on a three-dimensional
sphere in a channel for D > 16 lattice units, and Ladd (1994) finds good agreement
with two-dimensional pressure-driven flow in a channel for widths above 9 lattice
units. When the lattice fluid is coupled to a discretized finite-element object, the
ratio lFEA is introduced, which is defined as the average finite-element edge length
divided by cσi . The introduction of this secondary length scale has not been
previously investigated and requires special transfer of the lattice forces to the solid
boundary.

The effect of varying lFEA may be seen in figure 2 with three representative particles
ranging from finely meshed to coarsely meshed. The finely meshed object (lFEA = 2.0)
gives a good object description and FEA deformation results, and the coarsely
meshed object (lFEA = 6.2) gives a poor object description and poor finite-element
results. When lFEA approaches dimensions below the lattice spacing, fewer links exist
per finite-element surface. Thus, simple linear interpolation of link forces to the
finite-element nodes on the intersecting surface may result in incorrect local surface
stresses and, consequently, incorrect deformation. In order to correctly distribute
the fluid–solid interactions to finely meshed objects, a secondary length scale, σF ,
is introduced through distribution weights. The link-wise force on the j th node is
weighted according to

wj = exp

(
−d2

j

σ 2
F

)
, (2.15)

where dj is the distance between the link intersection with the finite-element surface
and the j th finite-element node. The weights are normalized such that the sum
of all weights for each lattice-link force is one. Buxton et al. (2005) use a similar
scheme when transferring link forces to a discretized lattice-spring object, but they
use a 1/d2 weighting scheme that fails when links land on a solid node. The
distribution length scale, σF , controls the length scale for the fluid–solid interactions.
For particles in which lFEA > 1, the exponential decay closely approximates a straight
linear interpolation to the adjacent FEA nodes. For particles where the solid mesh
has a higher resolution than the fluid (lFEA < 1), distribution according to (2.15)
becomes necessary. In § 3.2, typical simulations with lFEA =2.0 and D > 20 are shown
insensitive to changes in σF . Currently, all simulations have particles with lFEA > 1, thus
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Figure 3. Uncertainty in the particle border created by the combined discretization of the
solid and fluid. Discretization of the FEA mesh creates uncertainty in the particle border
compared with an ideal sphere. This uncertainty is magnified by the overlay of the fluid lattice
nodes and subsequent link finding shown in the inset. Link intersections are marked with
crosses (×).

linear interpolation is adequate. In the future, using smaller diameter particles may
be possible, causing a decrease in lFEA and requiring (2.15); however, the current
method relies on the high fluid resolution to resolve lubrication in a link-wise
manner.

2.5. Near-contact interactions

At high volume fractions, particles regularly approach within one lattice unit of each
other. When no fluid node exists between two particles, sub-mesh modelling must
be incorporated into the lattice-Boltzmann method. For the case of ideally smooth
surfaces, Ding & Aidun (2003) develop a lubrication model extending the analytic
solution for approaching spheres to a model for curved surfaces that uses lattice links.
This model performs well for a variety of different particle radii and fluid viscosities;
however, the required integration time step becomes very small as particles near
contact. Implementing this lubrication model in the present FEA framework poses an
additional problem. Particles can no longer be treated as idealized spheres, and the
FEA discretization of the particle creates an artificial surface roughness that, as in
the case of real particles, requires contact mechanics. Figure 3 shows the uncertainty
in the particle border due to the FEA mesh as compared to an ideal smooth
two-dimensional circular particle. This uncertainty is further compounded since the
particle border is identified by intersections between lattice links and the FEA mesh
(shown with crosses in the inset). For particles within this range of uncertainty, it is
possible for the reported gap distance to fluctuate based on the underlying lattice-
Boltzmann node locations – even to slightly negative values. Consequently, the results
are unphysical at these gaps, and a contact model must be used to keep particles
from entering this range.

The contact model developed uses a link-wise short-range exponential force similar
to Buxton et al. (2005) to prevent particles from overlapping. In actual simulations,
lubrication forces dominate and largely keep particles from approaching the contact
regime. Deformation aids in this regard, because it allows the particles’ surfaces to
deform readily to avoid contact. This deformation creates flat spots on approaching
particles, i.e. large areas of the particles are in close contact, and these areas have
low curvatures. Consequently, the minimum gap between deformable particles as they
pass one another is significantly larger than in rigid-particle suspensions. Near-contact
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interactions along links connecting approaching solid surfaces are calculated as

dF
(B)t+1
σ i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if gt+1 > cσi,[
3q̄

2c2
σ iλ

νρ

(
1

(gt+1)2
− 1

c2
σ i

)]
U t+1

app · eσ i if gc < gt+1 < cσi,

[
3q̄

2c2
σ iλ

νρ

(
1

g2
c

− 1

c2
σ i

)]
U t+1

app · eσ i if gt+1 < gc

+ Acexp

(
−gt+1 + gc

σc

)
φσi,

(2.16)

where U t + 1
app is the surface approach velocity at time t + 1, gt+1 is the link-wise gap

between surfaces at time t + 1, gc is the contact cutoff distance, λ is the local surface
curvature, and q̄ = 0.6 (Ding & Aidun 2003). These interactions are added to the
approaching surfaces on both particles when the link-wise gap is less than the link
length, cσi . Thus, the total force acting on a link connecting approaching surfaces is

F t+1
σ i = F

(B)t+1/2
σ i + dF

(B)t+1
σ i , (2.17)

where the link bounce-back force in (2.13) is written with a time superscript for the
purposes of compactness. The contact force along a link is adjusted for friction by

φσi =
(SN + μSF ST ) · eσ i

(SN + ST ) · eσ i

, (2.18)

where SN is the surface-normal vector, μSF is the coefficient of sliding friction, ST is
the projection of the surface-approach velocity on the surface tangential plane,

ST =
SN × Uapp × SN

|SN × Uapp × SN | .

The appropriate contact scale in (2.16) is Ac =6πμRŨ , where Ũ is the velocity scale
of the problem in lattice units, e.g. γ̇ R for particles in shear or the settling velocity
for sedimentation problems. The contact cutoff distance, gc, and the contact length
scale, σc, are functions of the particle surface roughness and are determined a priori.
The mean surface curvature in the lubrication model is the local curvature of the
approaching finite-element surfaces, which is calculated by

λ =
1

N

N∑
i=1

∣∣∣∣dT surf

ds

∣∣∣∣ ,

where T surf is the tangent vector to the surface in the direction of s, and s is a
vector connecting finite-element surface centroids. The summation is performed over
all neighbouring surfaces, with N = 3 for triangles.

The information needed to calculate dF
(B)t + 1
σ i in (2.16) is only known for time t ,

not t +1 as required for stability in Newmark’s method (2.9). Using the variables Uapp

and g at time t leads to instability as deformable particles approach one another;
however, the solution for t + 1 variables requires the simultaneous solution of fluid–
solid interactions and an inversion of the finite-element equation for every particle at
every time step. This computation is too costly for the simulation of suspensions, and
an iterative scheme is used to converge to the force at t + 1. The lattice link forces
are defined as

F t+1
σ i = F

(B)t+1/2
σ i + dF

(B)t
σ i + εt

F,σ i, (2.19)
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Figure 4. Illustrations of unbounded shear domain showing (a) solid particle and periodic
images, and (b) wrapping of a representative LBM node.

where dF
(B)t
σ i is defined as in (2.16) but using Uapp and g at time t instead of t + 1,

and εt
F,σ i is iterated to the correct numerical value.

2.6. Unbounded shear domain

To remove wall effects and enable the calculation of bulk rheological properties with
fewer particles, an unbounded shear-periodic domain is implemented in the LBM
framework through a Lees–Edwards boundary condition as described by Wagner &
Pagonabarraga (2002). The flow and vorticity directions (e1 and e3, respectively)
are treated in the usual periodic manner, with particle images reccurring at regular
intervals according to L1 and L3, the flow and vorticity domain lengths. In the shear
direction, e2, the periodic particle images convect with the shear velocity, such that
the domain undergoes continuous shearing. Thus, a particle’s image which is offset
in the shear direction by L2 will have a corresponding offset of γ̇ L2t in the flow
direction. Figure 4(a) shows the relative position of a particle and its periodic images
in unbounded shear; the vorticity direction, e3, is omitted for clarity. The velocity
of the periodic image must also be adjusted; consequently, the component of the
particle’s velocity in the flow direction is altered by the domain speed, γ̇ L2.

Implementing unbounded shear in the LBM framework poses unique challenges
because the fluid is treated as a set of discrete particle distributions in a lattice
arrangement. As shown in figure 4(b), the fluid distributions are subject to the
same position and velocity adjustments as the particles, i.e. portions of the fluid
distributions propagating outside the domain in the shear direction must have their
location adjusted by L2 in the shear direction and γ̇ L2t in the flow direction. Also,
these fluid distributions must be altered to account for the jump in velocity via
a Galilean transform applied to the portions of the fluid distribution crossing the
domain in the shear direction. Following the notation of Wagner & Pagonabarraga
(2002), this transform can be expressed as

f ′
σ i = fσi + f

(0)
σ i (u + U) − f

(0)
σ i (u) ,

where f ′
σ i is the fluid distribution adjusted for velocity U , which in the case of

simple shear is ±γ̇ L2/2. As an additional difficulty, the regular lattice arrangement
is interrupted owing to the continuously time-varying nature of the flow-direction
adjustment. Fluid distributions propagated across the domain must be stored in
virtual fluid nodes and then interpolated to the neighbouring lattice nodes, also
shown in figure 4(b).
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2.7. Stability

Since the finite-element integration time scale is separate from the lattice time scale, it
is possible for the boundary velocity to change on the lattice time scale and produce
instability in the fluid–solid coupling shown in (2.13) and (2.14). Stability of the fluid–
solid boundary coupling has been studied through analytic and numerical linear-
perturbation analyses of a one-dimensional sample problem, in which the deformable
solid boundary is modelled as a mass–spring–damper system, and the fluid is a
semi-infinite one-dimensional lattice (MacMeccan 2007). The analytic solution for the
movement of a mass–spring–damper system is known with characteristic parameters
of the natural frequency, ωn =

√
k/m, damping ratio, ζ = b/2

√
km, and damped natural

frequency, ωd = ωn

√
1 − ζ 2, where k is the spring stiffness, m is the boundary mass,

and b is the boundary damping. The resulting stability criteria is compared to
a particle’s finite-element frequency spectrum. For a given vibrational frequency,
stability is achieved by restricting the lattice time step and adding minimal material
damping into the finite-element model such that boundary velocity fluctuations do
not occur on the lattice time scale.

3. Sample problems
In this section, several test problems are presented to demonstrate the effects of

coupling the finite-element and lattice-Boltzmann methods for the simulation of
particles in suspension. Of particular interest are the effects of particle discretization,
lFEA, on the lattice-Boltzmann method since they have not been studied previously. In
order to investigate fluid–solid coupling, the following cases are presented: an inflated
thin-walled sphere, a fluid-filled initially spherical membrane in shear flow, a settling
particle, and red blood cell (RBC) deformation in flow chambers. Next, the case of
two spheres approaching each other with constant velocity demonstrates the effect
of lFEA in lubrication and near-contact modelling. The effect of particle discretization
on the calculation of the dilute limit stresslet is studied, and the suspension stress
calculations are further validated by simulating a cubic array of spheres.

3.1. Inflated sphere

The inflated finite-element sphere in a quiescent fluid demonstrates the fluid–solid
coupling between FEA and LBM. A thin-walled deformable sphere is subjected to an
internal pressure by increasing the fluid density inside the particle and thus the lattice-
Boltzmann pressure, which are related through P = ρf c2

s , where ρf is the density of

the fluid, and cs is the lattice-Boltzmann pseudo-sound speed (here cs =1/
√

3). The
pressure is applied through lattice links to the finite-element solid, and the external
fluid is allowed to damp the solid motion. The resulting change in radius of the sphere
is given by the analytic solution (Young & Budynas 2002),

�R =
PD2 (1 − νp)

8EY tM
, (3.1)

where EY is Young’s modulus, tM is the wall thickness, and νp is Poisson’s ratio. The
computations are performed in a 100 × 100 × 100 periodic domain, and the sphere’s
initial radius is set at 10 lattice units. Time-history results of the sphere’s inflation
are shown in figure 5 for three representative finite-element discretizations, where the
finite-element discretizations are similar to those shown in figure 2. As seen in figure 5,
the FEA model undergoes a damped oscillation when subjected to a step change in
internal pressure. The period of the oscillation agrees with the analytic prediction of
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Figure 5. Transient response of finite-element thin-walled spheres in fluid which are inflated
using the lattice pressure, P = ρf c2
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a sphere in vacuo, calculated from (Buxton et al. 2005),

T = 2πR

[
2EY

ρs(1 − νp)

]1/2

,

where ρs is the density of the solid.
The results are also consistent with Buxton’s results for an elastic lattice-spring

sphere with internal fluid at a viscosity of 1/6. The present simulations were performed
at a variety of particle orientations and positions, and the results show invariance
with respect to rotation and translation. As seen in figure 5, the lFEA =8.7 particle
produced oscillatory behaviour but failed to converge to the analytic result. This
failure stems partly from the under-calculation of the lattice pressure owing to poor
object description, and partly from the inaccurate finite-element solution of a poorly
meshed object. Also seen in figure 5, results converge to the analytic solution for
lFEA � 2.0, while finite-element meshes of lFEA < 4.6 produce less than 5 % error in the
deformation results.

3.2. Fluid-filled spherical capsule in shear flow

The first-order analytic solution for a fluid-filled elastic and initially spherical
membrane in shear flow, in which the sphere continuously deforms into an ellipse as
it rotates, is given by (Barthès-Biesel & Sgaier 1985; Barthes-Biesel, Diaz & Dhenin
2002)

R2
d = R2 + 5

μf R

GM

2 + νp

1 + νp

r · E · r, (3.2)

where Rd is the deformed radius of the sphere, R is the undeformed radius, r is
a spatial location on the surface of the ellipse, and E is the fluid rate-of-strain
tensor. This solution is an asymptotic analysis on the capillary number and is valid
for small deformations, CaG � 1. The lattice-Boltzmann finite-element method with
linear-elastic shell elements produces behaviour consistent with this solution. The
fluid-filled membrane continuously deforms as it rotates in shear flow, aligning 45◦

from the flow direction as predicted by (3.2).



Simulating deformable particle suspensions 25

0.6

linear theory

LBM-FEA

neo-Hookean

0.5

0.4

0.3
(D

1
 –

 D
2
) 

/ 
(D

1
 +

 D
2
) 

0.2

0.1

CaG

10–3 10–2 10–1 100
0

D1

D2

Figure 6. Comparison of membrane models for fluid-filled spherical capsules in shear
flow. (D = 20 and lFEA =2.0) Small-deformation linear theory is valid for CaG < 0.07
(Barthès-Biesel & Sgaier 1985; Barthès-Biesel et al. 2002). Neo-Hookean membrane results are
from Eggleton & Popel (1998).

The amount of deformation in the initially spherical particle is characterized
by the major and minor diameters of the deformed shape. This deformation is
plotted as a function of capillary number in figure 6 for the coupled LBM–FEA
method compared with similar simulations using the immersed-boundary method
with a nonlinear neo-Hookean membrane model (Eggleton & Popel 1998). In both
the LBM–FEA and neo-Hookean results, the density and viscosity of the fluid inside
and outside the particle are the same. The dilatational modulus of the membrane is
three times the shear modulus for the neo-Hookean model and 2.96 times the shear
modulus for the LBM–FEA simulations. For the simulations, the particle has D =20
lattice units and lFEA = 2.0. The linear theory in figure 6 is from (3.2) and is valid
for CaG � 1 (Barthès-Biesel & Sgaier 1985). Good agreement is found between
linear theory, LBM–FEA, and immersed-boundary for CaG < 0.07. Above the small-
deformation limit (0.07 <CaG < 0.25), the linear finite-element model produces slight
strain-hardening compared to the neo-Hookean model, as expected. Regardless,
the amount of error introduced by the linear-elastic finite-element model is small
compared to overall deformation, and valid results are expected using the linear
model above the small-deformation limit.

Figure 7 shows the transient response for simulations of a spherical capsule at
three capillary numbers, and the results are compared to linear theory and the neo-
Hookean results from Eggleton & Popel (1998). As expected, good agreement between
all theories is seen at lower capillary numbers, with divergence appearing at higher
capillary numbers. Additionally, the effect of the force distribution length scale, σF ,
is shown, and the results are insensitive to changes in σF since lFEA = 2. Therefore,
suspension results shown in § 4 are insensitive to σF , and straight linear interpolation
can be used to minimize computational time.

3.3. Settling particle

The case of a settling sphere in a square channel was thoroughly investigated by Aidun
et al. (1998) for a smooth sphere in a lattice-Boltzmann fluid, and good agreement in
settling velocity was found between lattice-Boltzmann simulations and experimental
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Figure 7. Transient response of a spherical capsule compared to linear theory and
neo-Hookean results (Eggleton & Popel 1998). The effect of force distribution length scale, σF ,
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Figure 8. Settling on finite-element spheres with various mesh sizes in the centre of a square
channel; 1.5 < lFEA < 2.2.

results by Miyamura, Iwasaki & Ishii (1981). Results are extended to rigid discretized
finite-element spheres settling in a square channel in the same manner as Aidun,
where the inlet velocity of the channel is set to zero and the particle is allowed to
reach a steady-state terminal velocity starting from a position 200 lattice units from
the inlet. Fluid domains subdivided into 512 × 32 × 32 and 1024 × 64 × 64 lattice units
are tested, and particle diameter, D, to channel width, L, is varied from 0.15 to 0.65.
The terminal velocity, U , is normalized by the unconstrained Stokes-flow solution,
U0, and the Reynolds number based on the unconstrained settling velocity for these
simulations is 0.2. Results for various D/L are shown in figure 8 with lFEA < 2.2 for
all simulations. Again, good agreement is obtained with experiments for a variety of
particle-diameter-to-channel-width ratios.
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Figure 9. Spheres in a channel approaching with constant velocity. Channel walls are 70 units
apart; the sphere radii are 10 units. Near-contact lubrication and contact mechanics are given
by (2.16) with σc = gc = 0.02R.

3.4. Approaching spheres

Effects of discrete finite-element particles on near-contact modelling are displayed in
figure 9 for the case of two identical spheres approaching each other with constant
velocity. Approaching spheres of different radii were also simulated and gave similar
results. The simulations are similar to those presented by Ding & Aidun (2003) for
lattice-link lubrication between smooth particles. Two spheres of D = 20 approach
each other in a wall-bounded domain with walls 70 lattice-units apart, and to leading
order, the lubrication force between the approaching spheres is given by (Cox 1974)

Flub

2ρf νλ−1Uapp

=
3π

4g∗λ
+ Cwall, (3.3)

where Cwall is a constant depending on the wall effects on drag, and g∗ is the gap
between spheres. It is important to note that g∗ is the actual gap between ideal
smooth spheres and not the gap as calculated by link intersections; consequently,
the particles with poor object description have a large uncertainty in the location
of the border as discussed in § 2.5, making small negative gaps possible. In these
simulations, (2.16) is used for near-contact interactions with σc = gc = 0.02R. Thus,
the particle interactions are expected to diverge from (3.3) when g∗ < 0.02R as the
modelling transitions from lubrication to contact modelling. As seen in figure 9,
finely meshed spheres (lFEA = 2.0) converge to the analytic lubrication solution at
gaps above gc. Conversely, particles with lFEA > 3.0 under-predict lubrication forces
and yield lower contact forces owing to poor object description in the link formation.
Inaccurate local surface curvature calculations from poor object description partially
explain the poor lubrication results, and these inadequacies pose significant problems
for coarsely meshed particles in suspension. Also, the coarsely meshed particles have
a large artificial surface roughness owing to poor object description, and particles
exhibit surface roughness collisions and stick–slip-type dynamics when coupled to the
under-predicted lubrication and contact forces. Thus, finite-element meshes having
lFEA � 2.0 are essential for simulating suspensions at high volume fraction.
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3.5. Bulk stress in the suspension

When studying particle suspensions, describing the effect of suspended particles on
rheology is accomplished by calculating the bulk stress in the suspension. The bulk
stress is the volume-averaged stress of the suspending medium and the suspended
particles. Following the method of Batchelor (1970) and neglecting inertial terms, the
bulk stress, Σ , can be separated into a Newtonian contribution due to the fluid and
a potentially non-Newtonian contribution due to the particle, shown as

Σ = 2μE +
1

V

∑
S,

where E is the strain-rate tensor, and S is the contribution of an individual particle
to the bulk stress known as the stresslet. The volume-averaged effect of all stresslets
constitutes the contribution of the solid phase to the suspension stress. The stresslet
for each particle is obtained via the surface integral

S =

∫
A0

1
2
(σ x0 + x0σ ) · SN − μ (ub SN + SN ub) dA, (3.4)

where σ is stress in the Newtonian suspending medium at the particle boundary, and
x0 is the position relative to the centre of the particle.

For the coupled LBM–FEA method, this surface integral is readily computed since
the stress on the surface of the particles is known via the fluid–solid coupling. Also,
the boundary velocity used in the second term of the integral is known via the
derivative of the finite-element deformation vector. The stresslet calculation is verified
by simulating an isolated sphere in simple shear and comparing with the dilute-limit
analytic result, shown as

S = 5
6
πμD3E.

The dilute-limit behaviour remains Newtonian, and the only non-zero components of
the stresslet are S12 and S21, which, owing to the symmetric nature of the stresslet, are
equivalent. The height of the shear channel is gradually increased to eliminate wall
effects, and the S12 component of the stresslet normalized by the analytic result is
shown in figure 10 for several particle discretizations. As the wall effects are removed,
the stresslet converges to the analytic solution for lFEA < 3.0 and L/D > 4.0.
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array of simple cubic spheres.

The suspension bulk-stress calculation and unbounded-shear-flow boundary
condition were further validated by calculating the shear viscosities of a simple
cubic array of spheres. For this validation, eight spheres are initialized into a simple
cubic unit cell with fixed particle locations. A uniform shear field is applied via the
Lees–Edwards boundary condition, and the particle and fluid phase relax to steady-
state velocities. The calculated suspension stress is compared to analytic solutions for
cubic lattices (Zuzovsky, Adler & Brenner 1983; Nunan & Keller 1984), in which
the stress is expressed as a combination of two independent parameters, α and β .
For rigid particles, α and β are functions of lattice geometry and volume fraction,
and they correspond to pure straining and simple shear flow, respectively. The β

parameter is shown in figure 11 for a simple cubic lattice at a variety of volume
fractions. Also shown are asymptotic expansions given by Hofman, Clercx & Schram
(2000) for low φ and φ → φmax, where φ is the particle volume fraction, and φmax

is the maximum packing ratio for the given cubic lattice. Good agreement is seen
between the simulation results and asymptotic limits even at high volume fractions.
The highest concentration simulation data (φ = 47 %) corresponds to a gap between
spheres of 0.7 lattice spacings, which is within the subgrid lubrication modelling
shown in (2.16).

Although the Batchelor relation shown in (3.4) is strictly valid for Stokes flow, the
simulations presented in § 4 are at Reynolds numbers approaching the Stokes-flow
limit (typically < 0.13). Dilute-limit work shows negligible inertial effects on the shear
viscosity at these Reynolds numbers (Lin, Peery & Schowalter 1970; Mikulencak &
Morris 2004), and simulations at lower Reynolds number give consistent results.
Future work will attempt to quantify these inertial effects and to determine when they
are significant.

3.6. Red blood cell deformation

Red blood cells consist of a cytoskeleton and phospholipid membrane encapsulating
a fluid solution of haemoglobin. The primary structural protein of the cytoskeleton,
spectrin, is loosely coupled to the fluid membrane through proteins such as ankyrin.
This composite structure gives the RBC both solid and fluid properties. RBCs are
often modelled using the nonlinear Skalak model (Skalak et al. 1973), which conserves
RBC surface area, or a neo-Hookean model (Dao, Lim & Suresh 2003; Pozrikidis
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2003; Bagchi, Johnson & Popel 2005), which does not conserve RBC surface area.
The effect of the RBC membrane model is unknown for simulations of RBCs in
high-volume-fraction suspensions. The present study is limited to simulations at
small capillary number and models the RBC membrane using 504 linear-elastic
finite-element ‘shell’ elements. In this section, this membrane model is compared to
RBC deformation in flow chambers with excellent agreement. RBCs are modelled as
three-dimensional biconcave elastic membranes encapsulating haemoglobin. The RBC
membrane has an effective elastic shear modulus of 5.7 × 10−3 dyn cm−1 (Waugh &
Evans 1979) and a bending stiffness of 2.2 × 10−12 dyn cm (Hwang & Waugh 1997).
A Poisson ratio of 0.48 results in EY /GS = 2.96 and similar behaviour to the neo-
Hookean model for RBC membrane deformation. The haemoglobin inside the RBC
membrane is set to a viscosity of 6 cP while the plasma surrounding the RBC has a
viscosity of 1.2 cP at 37 ◦C (Harkness & Whittington 1970). The RBCs have a major
diameter of 7.8 μm and thickness of 2.2 μm at the flank and 0.9 μm at the dimple.
The major RBC diameter is set to 24 lattice units with an average lFEA =2.0.

Dilute-limit suspensions of RBCs in low-viscosity fluid and passing through a
flow chamber provide an excellent opportunity to compare experimental RBC
deformation to simulations. Conversely, many traditional experiments apply stresses
much higher than arterial levels by using high-viscosity suspending fluid (Fischer,
Stohr-Lissen & Schmid-Schonbein 1978; Bessis, Mohandas & Feo 1980; Schmid-
Schonbein, Grebe & Heidtmann 1983; Watanabe et al. 2006). Furthermore, when
RBCs are suspended in a high-viscosity fluid, they become oriented with the shear
flow and exhibit a tank-treading motion (Fischer et al. 1978; Schmid-Schonbein et al.
1983). In the case of a low-viscosity suspending fluid, when shear stresses are below
1 N m−2, many RBCs orient in the ‘wheel’ configuration, i.e. the symmetric axis of a
RBC orients along the vorticity direction, which minimizes energy dissipation (Bitbol
1986). Although the preference for the ‘wheel’ orientation under these conditions is
unclear, it requires both RBC deformation and fluid inertia. In this orientation, the
thin flanks of the RBC support the shear stress, and the deformed RBC cross-sectional
shape may be assumed elliptical and the major and minor axes measured. Liu et al.
(2007) review this method. The RBC small-deformation index is given by

DI =
D1 − D2

D1 + D2

, (3.5)

where D1 and D2 are the major and minor diameters of the RBC cross-section when
viewed from the side. By assuming that the RBC shape is approximately elliptic, the
deformation parameter is experimentally measured as

DI =
(D1/D0)

2 − 1

(D1/D0)
2 + 1

, (3.6)

where D0 is the average undeformed RBC diameter (Yao et al. 2001; Liu et al. 2007).
Analysis of current LBM–FEA simulations indicates that (3.6) under predicts the
small deformation index in (3.5) by only 1 %, validating the treatment of RBCs in
the wheel orientation as deformed ellipses. In flow-chamber experiments, the small
deformation index is directly observed through high-resolution photographs of RBCs.

The flow-chamber experiments of Yao et al. (2001) are simulated by placing a RBC
in a rectangular flow chamber with a height of 45 μm. Increasing the pressure gradient
varies the flow rate. As in experiments, the average shear stress in the chamber is
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Figure 12. Small-deformation index for RBCs in ‘wheel’ orientation as a function of capillary
number. In both plots, the suspending fluid has a viscosity of 0.707 cP. (a) Results for flow
chamber of height 45 μm with RBC located at 1/4 of the flow chamber height. Experimental
flow-chamber results are from Yao et al. (2001). (b) Results for shear flow. Experimental results
are from Yao et al. (2001) using low-viscosity ektacytometry.

measured from the volumetric flow rate, Q, as

τ̄ =
3Qμf

h2w
, (3.7)

where μf is the viscosity of the suspending fluid (0.707 cP), h is the height of the
chamber (45 μm), and w is the width of the chamber. The RBCs distance from the wall
and, consequently, the average shear stress experienced are unknown in the experi-
ments. Thus, in the simulations, the RBC is placed at 1/4 of the height of the
flow chamber where the average shear stress is found. RBCs reach steady-state
deformation quickly (γ̇ t < 2) and thus do not move significantly from this position.
The experimental flow chamber has a length of 6.5 cm and a width of 1 cm to avoid
entrance and transverse wall effects. The length and width of the simulations are set
to periodic boundaries and dimensions of 90 μm and 45 μm, respectively. Increasing
the length and width of the simulations by three times produces negligible changes in
RBC deformation, verifying the size of the computational domain.

The RBC’s small-deformation parameter is shown in figure 12(a) as a function
of capillary number. Simulations agree well with experimental results; however, the
slope of the experimental regression is slightly larger than the simulation results
owing to uncertainty in RBC material properties and RBC distance from the wall in
experiments. At shear stresses above experimental results, RBCs took longer to reach
steady-state deformation and started to precess away from the ‘wheel’ orientation.
Thus, the RBCs at higher shear stress resulted in slightly lower deformation than
linear deformation would indicate.

Low-viscosity ektacytometry measures RBC deformations in shear flow though
changes in laser-diffraction patterns. Low volume fractions of RBCs are suspended in
a low-viscosity fluid and placed in a Couette device, in which inner and outer rotating
cylinders cause shear flow. Owing to the low-viscosity suspending fluid, many RBCs
orient in the ‘wheel’ configuration as discussed above. The deformations observed
in low-viscosity ektacytometry have been validated to the flow chamber technique
described in Yao et al. (2001) and Liu et al. (2007) and to other experimental measures
of RBC elasticity such as micropipette aspiration (Liu et al. 2007). Computational
comparisons to low-viscosity ektacytometry are performed by placing a RBC in
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wall-bounded shear flow with the walls separated by four RBC diameters. The
viscosity of the suspending fluid is 0.707 cP. The RBC small-deformation parameter
is shown in figure 12(b) as a function of capillary number with the simulations
agreeing well with experiments at all shear stresses.

4. Suspension results
The newly developed LBM–FEA method is capable of simulating suspensions of

red blood cells (RBCs) and platelets at 40 % volume fraction. The LBM–FEA method
is particularly well-suited to simulate blood flow because RBC deformation is one
of the most important aspects of blood rheology. Changes in RBC deformation are
known to alter continuum-level measures of suspension viscosity (Kim & Beissinger
1993; Shin et al. 2004) and diffusivity (Cha & Beissinger 1996). Furthermore, the stress
environment in whole blood is known to be important in a range of problems such
as leukocyte and platelet adhesion (Munn et al. 1996; Konstantopoulos, Kukreti &
McIntire 1998; Sun, Migliorini & Munn 2003).

RBCs are modelled as three-dimensional biconcave elastic membranes encapsulat
ing haemoglobin, as described in § 3.6, with the major diameter set to 24 lattice
units and an average lFEA = 2.0. Platelets are also included in simulations to show
the versatility of the LBM–FEA method. Unlike RBCs, platelets have a complex
internal structure consisting of a complex cytoskeleton which contains dense bodies
and α-granules. Platelets are modelled as an effective solid using 711 linear-elastic
‘brick-type’ finite-elements with a Young’s modulus of 1.7 × 103 dyn cm−2 and shear
modulus of 0.57 × 103 dyn cm−2 (Haga et al. 1998). Although platelet deformation is
small compared with RBCs, the inclusion of a finite-element representation of platelets
has negligible computational penalty owing to their small numbers as compared
with RBCs. The inactivated platelets simulated in this work have an approximately
ellipsoidal shape with a major diameter of 2.5 μm and a thickness of 0.7 μm (Paulus
1975; Haga et al. 1998), and they account for 0.1 % of the total volume fraction.
Owing to their smaller size, platelets are meshed with an average lFEA = 1.5.

4.1. Suspension viscosity

For the purposes of studying blood rheology at continuum-level scales, suspensions of
RBCs and platelets are simulated in unbounded shear flow at 40 % volume fraction
and CaG = 0.037. In these simulations, the length of the domain in the shear and flow
directions is 1.5 times the length in the vorticity direction. The reduced viscosity of
blood is shown as a function of the number of simulated RBCs in figure 13 with

μr =
μeff

μ
,

where μeff is the effective suspension viscosity, and μ is the viscosity of the suspending
medium. In figure 13, the time-averaged relative viscosity is plotted against non-
dimensional time to show convergence of viscosity and insensitivity to the number
of particles. Microstructure such as RBC orientation was also consistent between
simulations above 73 RBCs. These results differ from simulations of wall-bounded
suspensions in shear flow where the suspension viscosity decreases with gap height
when the gap height is greater than the RBC diameter (MacMeccan 2007). A depletion
layer forms near the wall, reducing the viscosity locally. Thus, the reported viscosity in
wall-bounded simulations is lower than simulations where wall effects are negligible.
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Figure 13. Time-averaged effective suspension viscosity for RBCs and platelets at φ = 40.5 %
and CaG = 0.037 for various number of particles, N . Experimental whole blood results are
from Merrill et al. (1963).

4.2. Shear-thinning behaviour

The shear-dependent nature of blood rheology at continuum scales is well-documented
with non-Newtonian shear-thinning viscosity in Couette-type viscometers with a large
gap (Merrill et al. 1963; Brooks, Goodwin & Seaman 1970). To study the shear-
dependence of blood, 204 RBCs and 12 platelets are simulated in unbounded shear at
40 % volume fraction with 0.011 < CaG < 0.047 for the RBCs, corresponding to shear
rates ranging between 15 s−1 and 64 s−1, respectively. The shear-dependent behaviour
of blood at CaG < 0.01 is not investigated owing to the influence of non-hydrodynamic
particle interactions that lead to RBC aggregates known as rouleaux (Fung 1993).
Simulations are performed at Rep = 0.1 and a lattice-Boltzmann Mach number of
0.03. Simulation results at Rep = 0.03 and Rep =0.2 show insensitivity to changes
in particle Reynolds number. Comparisons between simulations and experiments are
made based on RBC CaG similarity. An example RBC simulation at γ̇ t =0 and
γ̇ t = 10 is shown in figure 14(a, b) with steady-state suspension dynamics reached
by γ̇ t = 10. As seen in figure 14(a), RBCs are initialized at random locations and
orientations, using a procedure described in MacMeccan (2007).

At the investigated shear rates and 40 % volume fraction, blood is often described
by Casson’s equation,

√
τeff =

√
τyield + C

√
γ̇ ,

where τeff is the effective suspension shear stress, and τyield is a constant which is the
yield stress of the suspension in shear. A Casson fluid exhibits non-Newtonian and
shear-thinning behaviour. The reduced viscosity of blood is shown as a function of
CaG in figure 15. In dimensional values, the effective viscosity in simulations decreases
from 5.46 cP at CaG = 0.011 to 4.73 cP at CaG = 0.047. The simulations shown agree
well with experimental values reported by Merrill et al. (1963) for blood at 42.5 %
volume fraction in a large-gap Couette-type viscometer. Experimental blood flow
data reported by Fung (1993) at higher and lower volume fraction–display a larger
and smaller viscosity, respectively, with CaG similarity based on material properties
at 25 ◦C (Harkness & Whittington 1970; Waugh & Evans 1979). Good agreement
between simulations and experimental data indicates that the LBM–FEA method
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Figure 14. Example simulations: (a, b) 204 RBCs with CaG =0.022 and 12 platelets in
unbounded shear flow at (a) γ̇ t = 0 and (b) γ̇ t = 10. (c, d) 200 fluid-filled capsules with
CaG = 0.027 in unbounded shear flow at (c) γ̇ t = 0 and (d) γ̇ t =10.

developed in this work contains the necessary physics to predict blood behaviour at
physiologic haematocrit and shear rates. Furthermore, the RBC membrane model,
which is consistent with published models, is appropriate for the simulation of RBC
suspensions at low to moderate shear rates. Further work is required to investigate
the effect of Skalak and neo-Hookean RBC membrane models on blood rheology and
microstructure, especially at higher shear rates where the models diverge owing to
increased membrane strain. Owing to the versatility of the finite-element framework,
these models may easily be incorporated into this methodology.

Also shown in figure 15 are results for 200 fluid-filled and initially spherical capsules
simulated at 40 % volume fraction in unbounded shear flow, with capsule membrane
properties that are identical to RBC membranes. The fluid viscosity inside the capsule
is that of haemoglobin. An example simulation at γ̇ t = 0 and γ̇ t =10 is shown in
figure 14(c, d) with steady-state suspension dynamics reached by γ̇ t = 10. Suspensions
of spherical capsules display shear-thinning behaviour similar to suspensions of
biconcave RBCs; however, values of μr are significantly lower in suspensions of
spherical capsules than in suspensions of biconcave RBCs. Thus, suspensions of sphe-
rical capsules are not an optimal analogue for studying for blood rheology.

4.3. Concentration-dependent behaviour

In addition to shear-thinning rheology, the LBM–FEA method can probe the
concentration dependence of blood viscosity as seen in figure 16. The RBCs in all
simulations have a capillary number of 0.021, and the domain size is fixed while the
number of particles varies from 54 to 216. The LBM–FEA method accurately predicts



Simulating deformable particle suspensions 35

8

7

6

RBCs 40 %

spheres 40 %

Merrill et al. 42 %

Fung 36 %

Fung 48 %
5μr

4

3

2
0 0.02

CaG

0.04 0.06 0.08

Figure 15. Reduced suspension viscosity of simulations of 204 RBCs and 12 platelets at 40 %
volume fraction and 200 fluid-filled spherical capsules at 40 % volume fraction in unbounded
shear flow as a function of CaG. Experimental data reported by Merrill et al. (1963) and Fung
(1993) are for blood in a Couette-type viscometer with a large gap.
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Figure 16. Reduced suspension viscosity of simulations of blood at different volume fractions
and CaG = 0.021 compared to experimental results by Fung (1993) for blood in a Couette-type
viscometer with a large gap.

the concentration-dependent viscosity of blood at physiologic volume fraction, while
slightly over predicting viscosity at low volume fraction. The slight over prediction at
low volume fraction is most likely to be due to experimental and biological variation,
in particular, reported physical parameters for non-dimensional results. The accurate
description of blood at varying concentrations is particularly important for the
simulation of complex flows where RBC migration drives concentration gradients.

5. Conclusions
A coupled lattice-Boltzmann–finite-element method has been developed for the

direct numerical simulation of suspensions of large numbers of deformable particles.
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The LBM–FEA method is capable of quantitatively describing RBC deformation
and suspension rheology at continuum-level length scales, i.e. at lengths much
larger than the suspended particles. This method captures both shear-thinning and
concentration-dependent behaviours. Additionally, no open parameters were used
to match simulation results to experimental results, since all pertinent physics are
explicitly included in the method. Unlike Stokesian dynamics or the boundary-integral
method, the LBM–FEA method scales linearly with the number of particles at a
given volume fraction and better than linearly with the number of particles at a given
domain size. Additionally, the local nature of the LBM and particle dynamics allows
for significant parallelism.

The LBM–FEA method is valid for solid deformable particles such as fibres or
fluid-filled capsules such as red blood cells and liposomes. Deformable particles may
have a different density from the fluid, and the internal fluid of a fluid-filled capsule
may have a different viscosity from the external fluid with no computational penalty.
Different particle shapes may be simulated by simply meshing differently shaped
objects, and active motion of the particles may be prescribed such as pseudopod
formation in activated platelets. Thus, the LBM–FEA method is extremely versatile
and powerful for a variety of applications.

Although the method presented here is efficient only for particle Reynolds numbers
O(0.01−1.0), other lattice-Boltzmann techniques may be substituted for zero (Ding &
Aidun 2008) or high (Lallemand & Luo 2000) Reynolds-number flows. One current
limitation to the method is the increased computational time experienced when
incorporating nonlinear solid material properties, owing to the small lattice-Boltzmann
time scale. To address this limitation, a nonlinear finite-element model based on the
continuum time scale is currently being developed.
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